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Some new exact relations are derived between integral properties of a progressive 
irrotational gravity wave of finite amplitude in deep water. I n  particular i t  is shown 
that the Eulerian-mean angular momentum xE is directly proportional to the 
Lagrangian T -  V ,  through the relation 

ifE = 2c(T- V)/g ,  

where c is the phase speed and g denotes the acceleration due to gravity. Moreover, 
for waves of constant length, the differential relation 

dXE = 2 ( 3 T -  V )  dc/g 
also holds. 

I n  a wave of limiting steepness i t  was shown previously that the level of action 
ya is very nearly equal to the crest level ymax. This is further discussed, and is shown 
to be probably a numerical coincidence. 

1. Introduction 
For steady irrotational gravity waves of finite amplitude, there exist a number of 

simple relations between the integral properties of the wave, for example the mean 
momentum density I ,  the mean densities of kinetic and potential energy T and V ,  
and the mean fluxes of momentum and energy (see Longuet-Higgins 1975). Thus, if 
we take axes so that the origin is a t  the mean surface level and so that the Eulerian 
mean velocity a t  every point is zero, then i t  may be shown that, in deep water, 

2T = c l ,  (1.1) 

F = c ( 3 T - 2 V ) ,  ( 1 . 2 )  

S,, = 4T-311, (1 .3 )  

where c is the phase speed, S,. is the radiation stress (i.e. the excess flux of horizontal 
momentum due to the waves) and F is the flux of the total energy density E = T+ V .  

One useful differential relation for steady waves of fixed length, when the amplitude 
is allowed to vary, is 

d E  = cdl .  (1 .4 )  

From this and (1 .1)  it  follows that 
dL = I dc, 

where L = (T- V )  is the Lagrangian density. Equations (1 .4)  and (1.5) show that E 
and T have maxima and minima simultaneously, i.e. a t  the same wave steepness, and 
similarly for L and c, though E and c do not have simultaneous maxima in general. 
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Another integral quantity less commonly considered is the angular momentum 
density A about some fixed point (z, y) .  The author suggested previously (Longuet- 
Higgins 1980) that A may be relevant to the dynamics of wave breaking. It is easily 
shown that A is independent of the horizontal coordinate x, and that the a.m. density 
about two points at different levels y and yf are related by 

A(Y)--A(Y’) = ( Y ’ - Y f I .  (1.6) 

Hence A(y) + y I  is independent of y and is equal to A(0) .  Unless otherwise stated we 
shall in the following take A to mean A(0) .  

When considering the time-averaged value of A it  is essential to distinguish 
between the Eulerian and the Lagrangian mean values. The Eulerian mean a.m. 
density xE is defined as the time-averaged value of A between two fixed vertical 
planes separated by one wavelength (in the z-direction). 

The Lagrangian mean a.m. density xL is defined as the time average of A following 
the particles of fluid, and a further distinction has to be made between the short-term 
and the long-term averages & (see Longuet-Higgins 1980, $8). Here, however, we 
shall be considering in detail only the Eulerian-mean density xE, and we shall prove, 
among other results, the very simple relation 

& = 2C(T- V)/g (1.7) 

connecting the Eulerian mean angular momentum with the Lagrangian density 
L = T -  V .  It follows immediately that xE is stationary a t  the same wave amplitudes 
as are L and c .  

Finally in $9 we consider the Lagrangian-mean angular momentum, and show that 
a near equality between the crest height of a wave of limiting steepness and the 
corresponding level of action (suitably defined) is probably a numerical coincidence. 

2. Definitions 
Consider a steady progressive wave, of wavelength A ,  travelling in the x-direction 

with speed c (see figure 1) .  .The y-axis being vertically upwards, the free surface is 
given by y = 7, a function of x-ct, and we may choose the origin so that 

1 fA 

Further, if (u, v) denote the components of the velocity (assumed irrotational), we 
may choose axes so that 

U = f 6 u dx = 0 

at any fixed point below the wave troughs. The mean densities of horizontal 
momentum (or impulse) and of kinetic and potential energy are defined by 

T = l, i(uz + v’) dy, 

v = s” gydy, (2.5) 

(2.4) 

where h is the mean depth (possibly infinite) and an overbar denotes the mean value 
with respect to x or t .  
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Y 

FIQURE 1 .  Sketch of a progressive wave, showing the contour of integration f. 

The angular momentum density A,, after $ 1, is defined by 

where a bar denotes the time average. In  this expression, since the limits of x are 
fixed, we may reverse the order of time averaging and of integration with respect to 
x. But because the wave is progressive, 

1, VdY = ;J; s_, V d Y d X ,  (2.7) 

which must vanish, since the total vertical momentum in the wave is zero. Hence 
the contribution of the term xu to the integral (2.6) is zero, and we have simply 

3. Transformations 
Let 4 denote the velocity potential, so that (u, v) = ($z, @,), and from ( 2 . 2 )  

[41:-0 = 03 

that  is, 4 is periodic in x. Then from (2.3) we have 

where r is the contour shown in figure 1 .  The contributions from the two vertical 
sides r, and r, cancel, by (3.1). The contribution from the horizontal bottom r, 
vanishes since dy = 0. We are left with the contribution from the free surface TI, and 
on integrating by parts we have 

M = [4YIL - jrl Y d4. (3.3) 

The first term on the right again vanishes by periodicity, hence 

7 d4 

(for an alternative proof see Longuet-Higgins 1975, $ 2 )  

(3.4) 
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Similarly from (2 .8)  we have by Green's theorem 

so 

and after integration by parts 

(3.7) 

I n  addition we have from ( l . l ) ,  (3.2) and (3.4) two expressions for the kinetic 
energy, namely 

and (3.9) 

4. Fourier series 
Consider waves in deep water, where $ +O as y - f -  a, and let @ denote the velocity 

potential in the steady flow as seen by an observer moving horizontally with the phase 
velocity c .  Clearly 

Let Y denote the corresponding stream function. Then X and y are conjugate 
functions of @ and Y,  and, if units are chosen so that 

@ = $-ex, where X = x-ct. (4.1) 

we may then write 

where an and K are real constants. Taking Y = 0 on the free surface, we then have 

n@ 

X = ---x a n sin -, 

c 

@ "  

c 1  

OD 

7 = - K + x  an cos -. 
1 

The condition 7 = 0 yields 

1"O 
so that K = - x n a i .  

2 ,  

(4.4) 
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From (3.4) we have also 

(4.7) 

since ?j = 0. So from (4.4) I = cK. (4.8) 

From (1.1) we then have 2T = c2K, (4.9) 

where K is given by (4.6). Analogous expressions for V and xE will be derived in $6. 

5. Proof of (1.7) 
Let us write Y = y - c2/2g and consider the integral 

F(n,  Y )  = d@, (5.1) 

where n is any integer and the integral is taken along any streamline Y = constant. 
By differentiating (5.1) with respect to Y and using the Cauchy-Riemann relations 
X, = - Y,, Y ,  = X,, it can easily be shown that 

(see Longuet-Higgins 1978). Therefore 

F = F, en ,Ic, (5.3) 

where F, is a constant. But as Y+-co so Y+oo and X,-iY,+-l/c, which is 
bounded. So when n > 0 we must have F, = 0, and the integral vanishes identically; 
while for n = 0, F is a constant, equal to its limit as Y+co, that is 2nc2.t Since 

where p2 = @$+@2, = (u-c)2+v2, (5 .5)  

this shows that 

(5.6) 
0 (n = 1,2, ...). 

1 [-, q2 e-in@/c(dX+ i d Y) = 

Now at the free surface we have from Bernoulli's equation, if we take g = 1, 

y + v  = p, Y+h2 = 0. (5.7) 

On substituting for q2 in (5.6) we obtain 

(5.8) 

(5.9) 

1 -?g2 (n = 0), 

0 (n = 1,2, ...). 

a, 

n-1 

{ 1s Ye-'no/c(dX+idY) = 
h 

i@ 
But from (4.4) 

Y+iX+- = ha,+ X a,e-in@/c, 
C 

i. Because @ runs from 0 to - 2 m ,  d@ is negative. 
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where a, = -2K-c2. (5.10) 

Now multiply each side of (5.9) by A-’ Y(dX+ i dY) and integrate term-by-term 
using (5.8). We get 

Y(dX+idY) = -fc2a,.  

The real part gives us 

‘1 A Y2dX- t s (X+p)  YdY = -+c2uo. 

(5.11) 

(5.12) 

The first integral in (5.12) equals 

A](q-$c2)zdX h = 2V+$c4, (5.13) 

since ?j = 0 by (2.1). The second integral in (5.12) equals 

by (3.6) and (3.8). Thus altogether (5.12) gives 

(2V+ic4)+ ( “ C E )  --T = -+c2(2K+c2), 

that is AE/c = T-2V+$’K 

= 2T-2V, 

by (4.9). This proves (1.7) when g = 1 ,  and hence generally. 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

6. Further relations for V and XE 
In $4 we found expressions for I and T in terms of the Fourier coefficients a,, 

through the relation (4.6) for K. We shall now find corresponding expressions for V 
and KE.  

Let us define 
1 -  

J = - I: u:. 
2 1  

(6.1) 

6V = J + c 2 K + P  (6-2) 

Then it will be shown that 

and 6XE/c = -J+c2K---&? 
(g being equal to 1).  

Starting from (3.7), we have 

by (4.1). On substituting for the series in (4.4), we have 
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and from (2.5) (6.6) 

S O  2xE = c(2 V -  J -  K 2 ) .  (6 .7)  

ZE = C(C2K-2V). (6.8) 

But from (5.16) and (4.10) we have also 

On eliminating AE and V in turn from these last two equations, we obtain (6.2) and 
(6.3). 

We can also write implicit expressions for the total energy density E = T+ V and 
the Lagrangian density L = T- V ;  thus 

6E = J +  5c2K+ K2  (6.9) 

and 6L = - J + C ~ K - - K ' .  (6.10) 

Through (5.10) we can also eliminate c2 and express V ,  AE, E and L in terms of a, 
and a,, a,, . . . . 

For waves of small amplitude a,  we have 

J - K - +a:, - 1 +a:, (6.11) 

and it is seen clearly from (6.9) and (6.10) that 

B 'v iu;, I, 'v *a;, (6.12) 

while AE, like L,  is O(a;), as shown in Longuet-Higgins (1980, 96). 

7. Relations between the a, 
The set of integral relations (5.8) is easily shown to be equivalent to a set of 

quadratic relations between the coefficients a, in the Fourier series (5.9) for 7 (see 
Longuet-Higgins 1978 ; previously the simplest known relations were cubic). These 
quadratic relations may be stated in the form 

a,+a,a,+2a,a,+3a3a3+ ... = - C Z ,  

a, +a,a, +2a, a2 + 3a2 a3 + .. . = 0, 

a2+a,a,+2a,a2+3a,a,+ ... = 0, 

a3+a,a,+2a,a2+3a,a3+ ... = 0, 
. . . . . . . . . . . . . . . . . . .  

The first of these gives 

as in (5.10). It is the only one involving c2 explicitly. The remaining equations may 
be recast in the form 

a, + 2K = - c2, (7.2) 

(7.3) 

2a, a, + 3a, a3 + 4a3 a4 + . . . = -a ,  -a, a,, 

a lal  +3a1a3+4a2a4+. . .  = -a2-22a,a,, 

a2 a, + 2a, a2 + 4a, a4 + . . . = - a3 - 3a, a3, 

a3a,+2a,a,+3ala3 +... = -a4-44a,a,, 
. . . . . . . . . . . . . . . . . . . . . . . . . .  
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a 
it 

Let us multiply the first 
and p denote the sum of 
is easily seen that 

of (7.3) by a,, the second by a,, and so on, and add. If 
terms below and above the diagonal respectively, then 

2a = a,(2a1 a,) 

+ a3( 3a2 a, + 3a, a,) 

+ a4(4a3 a1 + 4a2 a2 + 4U1 as) 

+... 
= p. 

But summing the right-hand sides of (7 .3)  we have 

a+p=-2J-22a0K. 

Therefore 2a = p = -+(J+a,K). 

Now if in 

we substitute the series (4.4) for X and 7 we obtain 

2V = J -  K 2 +  R, 

where 

(7.4) 

(7.7) 

a ,  cos ""1 
C c d (:) [ ma, cos 

= $a+:@ (7.9) 

= -i(J+w,K), (7.10) 

by (7.5). On substituting for a, from (7.2), we find that (7.8) reduces to (6.2). 

8. Differential relations for AE 
From the basic result 

XE = 2cL 

(when g = 1 )  i t  follows that 

dXE = 2(Ldc+cdL), 

or from (1.5) dXE = 2(L+cl )  dc, (8.3) 

that  is dXE = 2(3T- V)dc. (8.4) 
This shows that A E  has maxima or minima a t  the same wave amplitudes as does the 
phase speed c and the Lagrangian I,. 

As regards the first maximum of c, this conclusion may be verified from the 
numerical values of XEE, c, T and B given in tables 1 and 2 of Longuet-Higgins (1980). 
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9. The Lagrangian-mean density AL 
Exact relations for the Lagrangian-mean angular momentum xL are more difficult 

to come by. For reference, however, i t  may be useful to  state concisely the analytical 
results derived by Longuet-Higgins (1980) for the long-time Lagrangian-mean, 
1.t. AL. 

If we define 

and 

S(Y3 =,s 1 2= ( Y + K + l _ ) ( & O l )  Y C  

0 

then i t  was shown that (in the present notation) 

1.t. AL = c( V - J - q p ) + c &  2 (9.31 

where CQ = lom i d Y .  (9.4) 

I n  (9.3) AL signifies the Lagrangian-mean angular momentum AL(0) about the level 
y = 0. By ( l . l ) ,  the mean angular momentum A,(y) about any other level is given 
by 

AL(Y)  = AL(O) - YI .  (9.5) 

We may then define the level of action ya as the height above the mean level for which 
1.t. A,(y) vanishes, that is 

The numerical calculations given in Longuet-Higgins (1980) showed that as the wave 
steepness ak increases from 0 to its limiting value for a steady uniform wave, 
ak - 0.4434, so ya increases from 0.5 k-l to  about 0.59 k- l ,  quite close to the crest 
height of a limiting wave, namely 0.596 k- l .  Despite further calculations by Williams 
(1981), it  is not yet known whether the two heights are theoretically equal. The 
problem presents an interesting challenge. 

Previously, the integral in (9.4) was evaluated numerically using the series 

ya = 1.t. A L ( 0 ) / I .  (9.6) 

expansions of S and S : m o o  

S = C a,  b,  b,,, e-2(m+n) (9.7) 

(9.8) 

m-1 n-o 

m 

n-o 

S =  z hie- znYlc , 

where b o =  1, 6 ,  = na, (n=  1 , 2  ,... ). (9.9) 

S/S’ = s ,  (9.10) 

Here we shall take the analysis a step further. We write 

where (9.11) 

The coefficients c, may be determined by comparing coefficients of e-2(m+n) y /c  in the 
relation 

S ’ S  = s. (9.12) 
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C, b2,Cn= E a,b,b, (Z=1,2 ,  ...), 
m+n-l m+n=l 

that  is 

(9.13) 

(9.14) 

. I  . . . . . . . . . . . . . . . . . . . . . . . . . .  

From these equations cl, c2, . . . may be determined in succession. To determine Q, 
however, we need only find, from (9.4), 

From (9.15), this can be expressed in the form of a determinant 

Q =  

(9.15) 

(9.16) 

in which all the elements are known combinations of the Fourier coefficients. 

q = 0 a t  the wave crest. From (5.7) this implies that  Y@=,, = 0, and so from (5.9) 
We are interested in the value of Q subject to the condition for limiting waves, that 

03 

C, an = -b 2 0' 

1 
(9.17) 

Now the crest height of a limiting wave above the mean surface level y = 0 is given 

Yrnax = Y. (9.18) 

So the conjecture that for the limiting wave ya = ymax is equivalent to the statement 
that ,  subject to the condition (9.17), 

by setting q = 0 in (5.7),  that  is to say 

c(V--J-+K')+CQ = $91. (9.19) 

Since I = cK this can be written 

Q = (J+?$K++K2)- 8, (9.20) 

or by (6.2) Q = +(5J+c2K+2KZ).  (9.21) 

In  view of (7.2) this reduces simply to 

Q = $ ( 5 J - a O K ) .  (9.22) 

It is not clear that the two expressions (9.16) and (9.22) are equal, even when 
account is taken of (7.3) and (9 .17)  and the definitions of J and K .  Thus i t  appears 
that  the closeness of ya to ymax for the highest wave is a purely numerical coincidence. 
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The physical consequences of this coincidence, discussed in Longuet-Higgins (1980, 
5 lo), remain unaffected. 

This paper was begun in Cambridge, England, during February 1984 and completed 
during a visit to the Caltech Je t  Propulsion Laboratory, Pasadena, the following 
month. The author is indebted to Dr M. T. Chahine and the staff of the Earth and 
Space Sciences Division for their hospitality and assistance in preparation of the 
manuscript. 
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